7 research outputs found

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Grammar-based genetic programming with dependence learning and bayesian network classifier

    No full text
    Grammar-Based Genetic Programming formalizes constraints on the solution structure based on domain knowledge to reduce the search space and generate grammatically correct individuals. Nevertheless, building blocks in a program can often be dependent, so the effective search space can be further reduced. Approaches have been proposed to learn the dependence using probabilistic models and shown to be useful in finding the optimal solutions with complex structure. It raises questions on how to use the individuals in the population to uncover the underlying dependence. Usually, only the good individuals are selected. To model the dependence better, we introduce Grammar-Based Genetic Programming with Bayesian Network Classifier (GBGPBC) which also uses poorer individuals. With the introduction of class labels, we further propose a refinement technique on probability distribution based on class label. Our results show that GBGPBC performs well on two benchmark problems. These techniques boost the performance of our system

    The Markov Network Fitness Model

    No full text
    Fitness modelling is an area of research which has recently received much interest among the evolutionary computing community. Fitness models can improve the efficiency of optimisation through direct sampling to generate new solutions, guiding of traditional genetic operators or as surrogates for a noisy or long-running fitness functions. In this chapter we discuss the application of Markov networks to fitness modelling of black-box functions within evolutionary computation, accompanied by discussion on the relationship betweenMarkov networks andWalsh analysis of fitness functions.We review alternative fitness modelling and approximation techniques and draw comparisons with the Markov network approach. We discuss the applicability of Markov networks as fitness surrogates which may be used for constructing guided operators or more general hybrid algorithms.We conclude with some observations and issues which arise from work conducted in this area so far
    corecore